
Proceedings of the

46th IEEE Real-Time Systems

Symposium - Brief Presentations Track

(RTSS 2025 BP)

Work-Already-Published and

RTSS@Work papers

Boston, MA, USA

December 2-5, 2025



Message from the Brief Presentations Chair

Welcome to the Brief Presentations (BP) Track of the 46th IEEE Real-Time

Systems Symposium (RTSS 2025), held in Boston, MA, USA, in December

2025. The RTSS 2025 BP Track provides a platform for researchers to present

their work in progress, announce relevant publications from journals or other

sources that are of interest to the real-time systems community, and showcase

demonstrations of prototypes, tools, simulators, or systems that advance the

state of the art in technologies and techniques for real-time systems.

The BP Track shares the technical scope with RTSS 2025 and features three

categories of submissions:

� Work-in-Progress (WiP) papers;

� Work-Already-Published (WAP) papers (i.e., journal papers not yet pre-

sented); and

� RTSS@Work demonstrations and experience reports.

This year, the BP Track accepted nineteen peer-reviewed papers. This book-

let contains the accepted WAP extended abstracts and RTSS@Work demonstra-

tion summaries. Accepted WiP papers appear in the main RTSS 2025 proceed-

ings published by IEEE.

I am grateful to the RTSS 2025 BP Technical Program Committee for their

thorough evaulations and constructive feedback on the submitted papers, to the

RTSS 2025 organizers for their support in arranging the RTSS 2025 BP Track,

and to all authors who submitted their work.

Federico Aromolo – Scuola Superiore Sant’Anna, Pisa, Italy

RTSS 2025 Brief Presentations Chair

i



Technical Program Committee

Tanya Amert – Carleton College, USA

Bjorn Andersson – Carnegie Mellon University, USA

Mohammad Ashjaei – Mälardalen University, Sweden

Vijay Banerjee – Washington State University, USA

Joshua Bakita – University of North Carolina at Chapel Hill, USA

Andrea Bastoni – Technical University of Munich, Germany

Matthias Becker – KTH Royal Institute of Technology, Sweden

Florian Brandner – Télécom Paris, France

Daniel Casini – Scuola Superiore Sant’Anna, Pisa, Italy

Weifan Chen – Boston University, USA

Hyunjong Choi – San Diego State University, USA

Cédric Courtaud – Huawei, France

Xiaotian (Steven) Dai – University of York, UK

Anäıs Finzi – TTTech Computertechnik AG, Austria

Giovani Gracioli – Federal University of Santa Catarina, Brazil

Monowar Hasan – Washington State University, USA

Qingqiang He – Great Bay University, China

Tomasz K loda – LAAS-CNRS, France

Ruoxiang Li – City University of Hong Kong, China

Yehan Ma – Shanghai Jiao Tong University, China

Alberto Marchetti-Spaccamela – Sapienza University of Rome, Italy

Federico Reghenzani – Politecnico di Milano, Italy

Yuxin Ren – Huawei Technologies, China

Sepideh Safari – Institute for Research in Fundamental Sciences, Iran

Marion Sudvarg – Washington University in St. Louis, USA

Binqi Sun – Technical University of Munich, Germany

ii



Youcheng Sun – Mohamed Bin Zayed University of Artificial Intelligence, UAE

Ashutosh Tadkase – NVIDIA, USA

Harun Teper – TU Dortmund, Germany

Corey Tessler – University of Nevada, Las Vegas, USA

Yidi Wang – Santa Clara University, USA

Bingkun Yao – City University of Hong Kong, China

Patrick Meumeu Yomsi – Instituto Politécnico do Porto, Portugal

Raffaele Zippo – University of Pisa, Italy

iii



Contents

Message from the Brief Presentations Chair i

Technical Program Committee ii

1 Work Already Published: Limited-Preemption EDF Scheduling

for Multi-Phase Secure Tasks

Benjamin Standaert, Fatima Raadia, Marion Sudvarg, Sanjoy Baruah,

Thidapat Chantem, Nathan Fisher, Christopher Gill 1

2 Work Already Published: Learning-Assisted Schedulability Anal-

ysis: Opportunities and Limitations

Sanjoy Baruah, Pontus Ekberg, Marion Sudvarg 3

3 RTSS@Work: Toward Fine-grained Performance Tracing on

ARM-based SoC/FPGA platforms

Patrick Carpanedo, Denis Hoornaert, Marco Caccamo, Renato Mancuso 5

4 RTSS@Work: VecSim, a Vehicular Edge Computing Simulator

for Real-Time Applications

Chuanchao Gao, Arvind Easwaran 7

Proceedings edited by Federico Aromolo - RTSS 2025 Brief Presentations Chair.

iv



Work Already Published: Limited-Preemption EDF
Scheduling for Multi-Phase Secure Tasks

Benjamin Standaert*, Fatima Raadia†, Marion Sudvarg*,
Sanjoy Baruah*, Thidapat Chantem‡, Nathan Fisher†, Christopher Gill*

*Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, MO, USA
†Wayne State University, Detroit, MI, USA ‡Virginia Tech, Blacksburg, VA, USA

*(b.g.standaert, msudvarg, baruah, cdgill)@wustl.edu †(fatima.fr, fishern)@wayne.edu ‡tchantem@vt.edu

Abstract—Safety-critical systems may use mechanisms such
as Trusted Execution Environments or specialized coprocessors
to isolate certain tasks and ensure security; however, this may
result in task preemptions crossing an isolation boundary, leading
to additional performance overhead. If this overhead is not
considered during scheduling, it may result in deadline misses.
For this reason, our prior work [2] introduced the Multi-Phase
Secure (MPS) task model, which models tasks that execute in
phases with different security requirements and corresponding
setup/teardown costs. In our work-already-published [9], we
make corrections to the prior work (including to a long-standing
schedulability condition for EDF under limited preemption)
and introduce optimizations which significantly improve the
performance of our algorithm for determining schedulability
of MPS task sets. This improvement allows us to test the
schedulability of larger task sets; consequently, we gain a more
detailed understanding of the benefit of applying the MPS task
model to task sets with varying task parameters.

Index Terms—Real-Time Systems, Limited-Preemption
Scheduling, Trusted Execution Environments

I. OVERVIEW

In today’s world, real-time systems are increasingly ex-
pected to operate securely, especially in domains like IoT,
automotive, and edge computing. Mechanisms such as trusted
execution environments (TEEs) provide strong isolation but
introduce additional timing and resource constraints, par-
ticularly when tasks must execute across secure and non-
secure contexts. These challenges impact traditional schedul-
ing approaches due to phase-specific execution and preemption
requirements.

Several works have addressed the trade-off between secu-
rity and schedulability in real-time systems. [8] and [7] use
MILP formulations to optimize system resilience under attack,
while [10] explores runtime security overheads. However,
these works overlook preemption-related costs introduced by
security mechanisms. Limited-preemption scheduling has been
studied as a means to balance blocking times with preemption
overheads [1], [3], [6]. More recent work introduces the idea
of selecting preemption points under the assumption of con-
stant preemption overhead [4], [12], or per-block preemption
costs [5], but does not address task models with phase-specific
preemption overheads as considered in this paper.

Work funded by NSF Grants CPS-1932530, CNS-2141256, CNS-2229290,
IIS-1724227, CNS-2038609, CCF-2118202, CNS-2211641, CPS-2038726.

In this work, we consider the Multi-Phase Secure (MPS)
task model, in which tasks are divided into execution phases
across distinct security mechanisms that each incur unique
startup and teardown overheads. Based on this model, we
adapt the Earliest Deadline First (EDF) scheduling algorithm
to allow preemption only at controlled points, effectively
balancing blocking times and preemption costs. To enforce
this, we adopt the fixed-preemption point model [11], where
preemption is only allowed at statically inserted points deter-
mined prior to run-time. Given a maximum chunk size βi for
each task τi, the algorithm selects a set of preemption points
within each phase such that no non-preemptive region exceeds
βi. These points are selected to trade off between increased
preemption overhead and reduced blocking of higher-priority
tasks. Importantly, the algorithm is optimal in the sense that if
a schedulable set of preemption points exists that satisfies all
timing and security constraints, it will find such a selection.

Our work-already published [9] extends, corrects, and re-
fines prior results on Multi-Phase Secure (MPS) task schedul-
ing [2], introducing several important contributions. First, it
corrects a longstanding EDF schedulability condition for
limited-preemption tasks, improving the theoretical founda-
tion of the analysis. Building on this correction, the paper
presents a pseudo-polynomial schedulability tests for MPS
task sets with bounded utilization, significantly enhancing
the efficiency of existing algorithms, particularly for tasks with
implicit deadlines. The paper compares MPS-based scheduling
to traditional approaches that are non-preemptive or that allow
only a single preemption between task phases. It demonstrates
that the MPS task model improves task set schedulability
while reducing analysis complexity, thereby broadening its
applicability to both safety-critical and general-purpose em-
bedded systems. Additionally, the paper resolves inconsisten-
cies between the theoretical model and its implementation
by adopting a continuous-time representation, resulting in
clearer and more accurate performance comparisons with non-
preemptive schedulers.

II. SUMMARY OF RESULTS

A. Schedulability

In an MPS system, introducing preemption points reduces
blocking time, which improves schedulability; but it also intro-

1



duces additional preemption overhead, which can act to reduce
schedulability. Therefore, the amount by which schedulability
is improved using our algorithm varies depending on the
task set parameters. Prior work [2] examined only a small
number of task sets. In our work-already-published [9], we
examine a much larger space of task sets. We observe the
following relationships between the task set parameters and
schedulability:

• Our algorithm improves schedulability for task sets with
moderate-to-high utilization of a single processor, but
whose total utilization remains under 1. For systems with
U = 1, it is not possible to insert additional preemption
points, as doing so would increase utilization.

• Task sets with larger task counts or more phases per
task have higher schedulability ratios. In these cases, the
system’s execution time is split among more task phases,
lowering the average blocking time of a single phase.

• Tasks with small periods are much less likely to be
schedulable; we hypothesize that these tasks are less
expandable with additional preemption points.

• For constrained-deadline systems, our algorithm also im-
proves schedulability, but increasing the number of tasks
or phases has less of an impact on schedulability.

In [9], we present plots of the schedulability ratios obtained
while varying all of these dimensions of the task set, as well
as comparisons of our algorithm with a phase-nonpreemptive
approach.

B. Performance improvements

Prior work [2] presented results only for systems containing
3 tasks; larger systems took too long to evaluate. In [9], we
correct implementation issues in the original and rewrite the
original Python implementation in C++. For sets of 4 tasks,
these changes alone improve the median execution time by
around 150× and the mean execution time by 3500×.

We also reduce the time complexity of the original algorithm
in [2]. We do so first by proving exactness of a pseudo-
polynomial testing set for bounded-utilization task sets. We
also introduce an optimization for implicit-deadline task sets
by showing that we need only test only up to the maximum
deadline of any single task in the set, which dramatically im-
proves performance. Figure 1 shows the improvement obtained
in execution times compared to the larger original testing
set. These performance improvements enable testing of much
larger task sets. In [9], we test sets containing up to 20 tasks,
and provide further details regarding the performance and
schedulability results obtained on these larger systems.

REFERENCES

[1] Sanjoy Baruah. The limited-preemption uniprocessor scheduling of
sporadic task systems. In Proceedings of the EuroMicro Conference on
Real-Time Systems, 2005. https://dx.doi.org/10.1109/ECRTS.2005.32.

[2] Sanjoy Baruah, Thidapat Chantem, Nathan Fisher, and Fatima
Raadia. A scheduling model inspired by security considera-
tions. In 2023 IEEE 26th International Symposium on Real-
Time Distributed Computing (ISORC), pages 32–41. IEEE, 2023.
https://dx.doi.org/10.1109/ISORC58943.2023.00016.

Fig. 1. As presented in [9]: Performance impact of varying the testing set size
in the C++ implementation, either testing up to the hyperperiod or stopping
at Dmax. Task sets have implicit deadlines, periods of 10–30 time units, 1–4
phases, and utilization of 0.9. Note the logarithmic scale.

[3] Marko Bertogna and Sanjoy Baruah. Limited preemption EDF schedul-
ing of sporadic task systems. IEEE Transactions on Industrial Infor-
matics, 2010. https://dx.doi.org/10.1109/TII.2010.2049654.

[4] Marko Bertogna, Giorgio Buttazzo, Mauro Marinoni, Gang Yao,
Francesco Esposito, and Marco Caccamo. Preemption Points
Placement for Sporadic Task Sets. In 2010 22nd Euromi-
cro Conference on Real-Time Systems, pages 251–260, 2010.
https://dx.doi.org/10.1109/ECRTS.2010.9.

[5] Marko Bertogna, Orges Xhani, Mauro Marinoni, Francesco Es-
posito, and Giorgio Buttazzo. Optimal selection of preemption
points to minimize preemption overhead. In 2011 23rd Euromi-
cro Conference on Real-Time Systems, pages 217–227. IEEE, 2011.
https://dx.doi.org/10.1109/ECRTS.2011.28.

[6] Giorgio C Buttazzo, Marko Bertogna, and Gang Yao. Limited
preemptive scheduling for real-time systems. a survey.
IEEE Trans. Industr. Inform., 9(1):3–15, February 2013.
https://dx.doi.org/10.1109/TII.2012.2188805.

[7] Cailani Lemieux-Mack, Kevin Leach, Ning Zhang, Sanjoy Baruah, and
Bryan C Ward. Optimizing runtime security in real-time embedded
systems. In Proc. of Workshop on Optimization for Embedded and Real-
time Systems (OPERA), December 2024.

[8] Sandro Di Leonardi, Federico Aromolo, Pietro Fara, Gabriele Serra,
Daniel Casini, Alessandro Biondi, and Giorgio Buttazzo. Max-
imizing the security level of real-time software while preserv-
ing temporal constraints. IEEE Access, 11:35591–35607, 2023.
https://dx.doi.org/10.1109/ACCESS.2023.3264671.

[9] Benjamin Standaert, Fatima Raadia, Marion Sudvarg, Sanjoy
Baruah, Thidapat Chantem, Nathan Fisher, and Christopher Gill.
Limited-preemption EDF scheduling for multi-phase secure tasks.
Leibniz Transactions on Embedded Systems, 10(1):3–1, 2025.
https://dx.doi.org/10.4230/LITES.10.1.3.

[10] Yujie Wang, Cailani Lemieux-Mack, Thidapat Chantem, Sanjoy Baruah,
Ning Zhang, and Bryan C Ward. Partial context-sensitive pointer
integrity for real-time embedded systems. In 2024 IEEE Real-Time
Systems Symposium (RTSS), pages 415–426. IEEE Computer Society,
2024. https://dx.doi.org/10.1109/RTSS62706.2024.00042.

[11] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. Feasibility anal-
ysis under fixed priority scheduling with fixed preemption points.
In 2010 IEEE 16th International Conference on Embedded and
Real-Time Computing Systems and Applications, pages 71–80, 2010.
https://dx.doi.org/10.1109/RTCSA.2010.40.

[12] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. Feasibil-
ity analysis under fixed priority scheduling with limited preemp-
tions. Real-Time Systems, 47(3):198–223, 2011. Publisher: Springer.
https://dx.doi.org/10.1007/s11241-010-9113-6.

2



Work Already Published:
Learning-Assisted Schedulability Analysis:

Opportunities and Limitations
Sanjoy Baruah

Washington University, USA
baruah@wustl.edu

Pontus Ekberg
Uppsala University, Sweden

pontus.ekberg@it.uu.se

Marion Sudvarg
Washington University, USA

msudvarg@wustl.edu

Abstract—Our work-already-published [2] presents the first
(to our knowledge) Deep-Learning based framework for real-
time schedulability-analysis that guarantees to never incorrectly
mis-classify an unschedulable system as being schedulable, and
is hence suitable for use in safety-critical scenarios. We relate
applicability of this framework to well-understood concepts in
computational complexity theory: membership in the complexity
class NP. We apply the framework upon the widely-studied
schedulability analysis problem of determining whether a given
constrained-deadline sporadic task system is schedulable on a
preemptive uniprocessor under Deadline-Monotonic scheduling (a
problem which is known to be NP-complete in general). A proof-
of-concept implementation demonstrates a predictive accuracy
exceeding 70% for systems of as many as 20 tasks without making
any unsafe predictions. Furthermore, the implementation has very
small (<1 ms on two widely-used embedded platforms; <4 µs
on an embedded FPGA) and highly predictable running times.

With Deep Learning (DL) already widely used in au-
tonomous Cyber-Physical Systems (CPS’s) for purposes of
perception, research efforts are underway to also use it to
speed up computation. In a recently published paper [2],
we investigate the use of DL to speed up schedulability
analysis. Many basic and fundamental forms of schedulability
analysis are known to be computationally intractable and hence
applying DL to speed it up seems a reasonable goal. However,
schedulability is frequently a safety-critical property: incorrectly
mis-classifying an unschedulable system as being schedulable
could have potentially catastrophic consequences. There is, to
our knowledge, no prior DL-based schedulability analysis that
guarantees to never return ‘false positives’ – to incorrectly
declare some unschedulable system to be schedulable. In
our work-already-published, we propose the first conceptual
framework for using Deep Learning for schedulability analysis
that guarantees to return no false positives, and is hence
suitable for use in safety-critical systems [2].

I. A NAÏVE APPROACH

Our work explores whether we can train Learning-Enabled
Components (LECs) to classify system specifications as either
satisfying a given schedulability property, or failing to do so.
As a first step towards achieving this goal, we trained simple
multilayer perceptrons (MLPs) to perform binary classification
for predicting FP and EDF schedulability for sporadic task
systems of 4 tasks in accordance with the framework of Fig. 1.

SYSTEM
SPECIFICATIONS

“Is the system schedulable?”

LEARNING-ENABLED

COMPONENT (LEC)

YES

NO

Fig. 1. LEC-based schedulability analysis

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Task System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

Overall Accuracy
True Positive Rate
True Negative Rate
False Positives

(a) FP Schedulability

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Task System Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 R
at

e

Overall Accuracy
True Positive Rate
True Negative Rate
False Positives

(b) EDF Schedulability

Fig. 2. Performance of DNN schedulability classifiers for systems of 4 tasks.

The observed performance of these networks are presented
in Fig. 2. While DL appears to be very effective in classifying
systems as schedulable or not, it makes occasional mistakes:
classification accuracy is not 100% for either FP or EDF
schedulability analysis. We must understand the consequences
of its errors, and take mitigative steps to ensure they do not
compromise system safety, before we can use LEC-based
schedulability analysis in safety-critical systems.

We point out that classification errors are of two kinds: a
FALSE NEGATIVE, with a schedulable system incorrectly clas-
sified as being unschedulable; or a FALSE POSITIVE, whereby
an unschedulable system is classified as being schedulable.
While a false negative may result in a schedulable system
being needlessly rejected as being unschedulable, false positives
present a safety hazard since a potentially unschedulable system
is misidentified as being schedulable. Though the number
of false-positives for our binary classifiers were low (of the
systems of 4 tasks that we generated, 1.8% were incorrectly
deemed DM schedulable and 2.1% EDF schedulable), the only
acceptable rate for safety-critical systems is zero and so we
must be able to eliminate all false positives if we are to use
DL for schedulability-analysis for safety-critical systems.

II. A SAFE FRAMEWORK

To eliminate the possibility of false positives, when DL-
based components declare a system to be schedulable, they
should also generate a justification for this decision in the form

3



SYSTEM
SPECIFICATION

“Is the system schedulable?”

LEARNING-ENABLED

COMPONENT (LEC)

YES + CERTIFICATE

NO

VERIFICATION
ALGORITHM

YES

NO

Can validate certificate

Cannot validate certificate

Fig. 3. A framework for LEC-based safety verification.

of a certificate. This certificate must be efficiently verifiable by
a (different) algorithm that is based on ‘traditional’ algorithmic
techniques in that it does not make use of Deep Learning and
related AI techniques; it is only if this verification algorithm
agrees that the certificate validates schedulability do we deem
the system specifications to have passed the schedulability-
analysis test. This proposed enhanced framework for DL-based
schedulability analysis is depicted in Fig. 3.

Recall that our goal in using DL for schedulability analysis
is to obtain greater run-time efficiency. There is ample research
on how one should implement LECs to have efficient (and
predictable) running times (see, e.g., [7]); we expect that one
can use the results of this research to obtain very efficient
implementations of the LEC in Fig. 3 (indeed, we demonstrate
examples of this in [2]).

We also want the verifier to be efficient. We argue that it
is reasonable to require that it should have running time no
worse than a polynomial in the size of the considered task
system. This requirement immediately relates the applicability
of the framework to well-studied concepts in computational
complexity theory [9], [1], in particular, the complexity class
NP – “NP is the class of [problems] that can be verified
by a polynomial-time algorithm.” [3, p. 1058]. Hence the
requirement that the certificate be verifiable in polynomial
time implies that the framework is applicable to schedulability-
analysis problems that are in NP.

Hence, in order to determine whether a schedulability-
analysis problem can be verified using DL through our
framework or not, it is necessary to demonstrate its membership
(or non-membership, respectively) in NP. To prove that a
schedulability-analysis problem belongs to NP, one must fur-
nish a polynomial-time verification algorithm for the problem.
However, how can one demonstrate its non-membership in NP?
In this case, established results from computational complexity
theory come into play. There exist various complexity classes
that are very widely believed to be distinct from NP, meaning
they contain problems ̸∈ NP. A problem is considered hard for
a complexity class if it is at least as computationally difficult to
solve as every other problem within that class. Thus, showing
a schedulability-analysis problem to be hard (or complete) for
any complexity class believed to be distinct from NP (such as
coNP) provides substantial evidence that it is not a member
of NP.

III. EXAMPLES

As FP-schedulability analysis is NP-complete [5] and there-
fore in NP, it fits within our framework. EDF-schedulability
analysis, however, does not; it is coNP-complete [4] and
therefore not in NP (assuming NP ̸= coNP).

It has been shown [6], [8], [10] that a necessary and sufficient
FP-schedulability condition for task system Γ is that for each
τi ∈ Γ, the recurrence Ri ≥ Ci +

∑
τj∈hp(τi)

⌈
Ri

Tj

⌉
·Cj should

4 8 12 16 20
Number of Tasks

0

5

10

15

20

25

Ex
ec

ut
io

n 
Ti

m
e 

(m
s)

(a) Response-Time Analysis

4 8 12 16 20
Number of Tasks

0

100

200

300

400

500

600

Ex
ec

ut
io

n 
Ti

m
e 

(
s)

Inference
Verification

(b) LEC Framework

Fig. 4. Worst-observed execution times on a Raspberry Pi 4.

have a positive solution for Ri that is no larger than τi’s relative
deadline Di. A certificate for the FP-schedulability of Γ could
simply be a value for Ri per task; given such a certificate,
the module labeled VERIFICATION ALGORITHM in Fig. 3 can
clearly efficiently verify that for each τi ∈ Γ, the provided
value of Ri does indeed satisfy the recurrence and is ≤ Di.

To investigate whether we could get LECs to generate such
certificates, we trained an alternative set of MLPs to predict the
Ri values via regression, rather than simply providing a binary
classification. Although accuracy overall decreases slightly with
verification (from 85.1% to 82.7%), unsafe false positives are
eliminated entirely. Moreover, analysis completes with fast
(<1 ms on two widely-used embedded platforms; <4 µs on
an embedded FPGA) and highly predictable running times.
See, for example, the worst-observed execution times in Fig. 4.

More details on the chosen DNN architectures, training
methods, and accuracy results may be found in [2]. Also
detailed are execution time statistics comparing the LEC
for FP-schedulability to traditional response-time analysis,
FPGA implementation results, and preliminary results for
the harder (though still in NP) problem of partitioned
FP-schedulability. As future work, we intend to collaborate
with AI/ML experts to improve upon the predictive power for
such hard problems, with the goal of enabling fast, accurate
schedulability analysis free of false positives.

REFERENCES

[1] S. Arora and B. Barak. Computational Complexity - A Modern Approach.
Cambridge University Press, 2009.

[2] S. Baruah, P. Ekberg, and M. Sudvarg. Learning-assisted schedulability
analysis: opportunities and limitations. Real-Time Systems, Jul 2025.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction
to Algorithms. MIT Press, fourth edition, 2022.

[4] F. Eisenbrand and T. Rothvoß. EDF-schedulability of synchronous
periodic task systems is coNP-hard. In Proceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms, Jan 2010.

[5] P. Ekberg and W. Yi. Fixed-priority schedulability of sporadic tasks on
uniprocessors is NP-hard. In 2017 IEEE Real-Time Systems Symposium,
RTSS 2017, Paris, France, December 5-8, 2017, pages 139–146. IEEE
Computer Society, 2017.

[6] M. Joseph and P. Pandya. Finding response times in a real-time system.
The Computer Journal, 29(5):390–395, Oct. 1986.

[7] W. Kang and J. Chung. DeepRT: predictable deep learning inference for
cyber-physical systems. Real-Time Systems, 55(1):106–135, Jan 2019.

[8] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In
Proceedings of the Real-Time Systems Symposium - 1989, pages 166–171,
Santa Monica, California, USA, Dec. 1989.

[9] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.
[10] A. Wellings, M. Richardson, A. Burns, N. Audsley, and K. Tindell.

Applying new scheduling theory to static priority pre-emptive scheduling.
Software Engineering Journal, 8:284–292, 1993.

4



RTSS@Work: Toward Fine-grained Performance
Tracing on ARM-based SoC/FPGA platforms

Patrick Carpanedo∗, Denis Hoornaert†, Marco Caccamo†, Renato Mancuso∗
∗Boston University, †Technical University of Munich

∗{pfcarp21, rmancuso}@bu.edu, †{denis.hoornaert, mcaccamo}@tum.de

I. INTRODUCTION

As modern System-on-Chip (SoC) architectures and work-
loads become increasingly complex, so does their interplay.
Hence, in disciplines such as real-time systems, where strin-
gent timing guarantees must be upheld, workload profiling has
become a crucial design step. The objectives are to gain an
understanding of (1) the hardware/software interplay, (2) the
SoC’s resource utilization, and (3), in particular, the root cause
of inter-core interference.

Efforts in systems design communities have produced static
and online software methods for profiling and analysis pur-
poses. Static approaches analyze portions of code offline to
provide insight. This class of methods is faster but offers
limited analysis due to strong assumptions of hardware and
execution. Modern online approaches, such as RT-bench [1],
rely on performance counters to track a limited amount of
resource statistics related to the workload execution. This
has the advantage of swiftly and faithfully representing the
software/hardware interplay. However, a trade-off must always
be found between granularity and overheads, as dedicated
thread(s) must continuously pool and store the performance
counters’ values. Furthermore, as the polling is asynchronous,
the acquired data cannot be reliably mapped onto segments
of the source code. Alternatively, hardware-based approaches,
such as [2], [3], are well-rounded, closed-source solutions
primarily focused on debugging purposes, which limit the total
amount of information that can be represented.

We posit that an affordable and straightforward alternative
exists; one that marries the user-friendliness of software-based
approaches with the exactitude and low-overhead of hardware-
based approaches. Our hardware/software co-designed ap-
proach named Debug over Ethernet (DoEth) takes advantage
of the highly reprogrammable nature of modern SoC/FPGA
platforms, such as the AMD-Xilinx UltraScale+ MPSoC se-
ries, to offer unmatched access to low-level activity of the
SoC and privileged access to a plethora of high-performance
peripherals. In this demonstration, we will briefly (1) outline
our vision and (2) describe how our proposed prototype
gathers fine-grained SoC’s activity information and makes it
accessible to the end-user.

This research was supported by the National Science Foundation (NSF)
under grant number CSR-2238476. Marco Caccamo was supported by an
Alexander von Humboldt Professorship endowed by the German Federal
Ministry of Education and Research.

II. SYSTEM OVERVIEW

In a DoEth setup, we distinguish two actors: a Guest and
a Host Computer. The former is the embedded computing
system we desire to monitor the progress fo the workloads and
resource utilization. Ideally, the guest’s SoC should feature a
tightly connected FPGA and direct access to high-bandwidth
IO or hardwired peripheral controllers (e.g., Ethernet, SFP+)
on which the data of interest will be placed. Importantly,
the SoC’s FPGA must have the possibility to collect debug
information and performance information about the system
(e.g., L2 refills). The host computer should have similar IO
to receive the guest-originated data and should be fast enough
to handle the incoming data rate.

A. Prototyping on a Commercial Platform

For our DoEth prototype, we identified the UltraScale+
MPSoC family manufactured by AMD-Xilinx as a prime
target. Following the organization depicted in Fig. 1, the trace
data path can be divided into three segments.
System-on-Chip side (guest). The SoC’s side CPU cores
(ARM Cortex A53) are equipped with a Performance Monitor-
ing Unit (PMU) and are connected to the system’s CoreSight.
The latter can be instrumented to monitor (1) predefined watch
points in the workloads’ code and (2) a selected set of the
PMU’s performance events (e.g., L2 refill, instructions retired).
Typically, the CoreSight produces packets upon a CPU core
hitting one of the watch points or when a performance event
has occurred a user-defined number of times.Importantly, the
CoreSight fabric can be programmed to route packets to many
destinations, one of which directly leads to the FPGA.
FPGA side (guest). Deployed on the FPGA, DoEth is on the
CoreSight’s receiving end (see Fig. 1). Its goal is to relay the
trace information (i.e., the packets) to the outside world (i.e.,
the host) via Ethernet over a transceiver connection. DoEth
is composed of three components through which the ingress
data flows: (1) a queue, (2) a FrameFormer, and (3), finally,
an Ethernet controller. The queue is necessary as a Clock
Domain Crossing (CDC) bridge between the fixed CoreSight
bus frequency (±250 MHz) and the fixed Ethernet controller
frequency (±156 MHz). Once the clock domain is crossed, the
FrameFormer creates eligible Ethernet frames.1 The frames are
directly forwarded to the Ethernet controller for transmission
to the host computer. The physical medium selected for DoEth

1The process consists of concatenating several CoreSight packets to form
the frame’s payload, before wrapping it in metadata.

5



Fig. 1. Overview of the demonstration setup and in-FPGA DoEth architecture. Trace data flows from the guest computer to the host computer. The data (1)
originate from the CoreSight, (2) traverse the FPGA’s queue, the FrameFormer, and the ethernet controller, (3) reach the host over ethernet, and (4), finally,
is picked up by the host using Wireshark and processed/displayed by our custom API.

is a dedicated transceiver line (SFP+). For simplicity, we
implement AMD-Xilinx’s high-performance Ethernet IP [4].

Host desktop computer. The host utilizes Mellanox
ConnectX-2 Dual SFP+ NiC with the respective Short Reach
(SR) optical transceivers to receive the payload from the
FPGA. The packets are captured using programs that utilize
libpcap (e.g., Wireshark) and saved in standard ASCII format.
Thereafter, the information given by Wireshark is cleaned from
all extraneous metadata and padding, reformatted to correct the
endianness flip of the Ethernet controller, and parsed through
a set of custom programs.

III. DEMONSTRATION PLAN

For the demonstration, we will showcase a prototype of
DoEth implemented on the AMD-Xilinx ZCU102, an Ultra-
Scale+ development board. The prototype will be deployed
alongside an OEM desktop computer equipped with a Network
Interface Controller (NiC) card, which will act as our host
computer. Both the ZCU102 and the desktop computer will
be linked via an SFP+ transceiver, as illustrated in Fig. 1.

The objective of the demonstration is to highlight DoEth’s
ability to not only monitor various performance counters, but
also to track curated watch-points in the guest computer’s
workloads. To this end, we devise a workload structured as an
acyclic graph of steps that the spectator can interact with. More
precisely, the ZCU102 will be equipped with a webcam whose
frame will be fed into an Artificial Neural Network (ANN).
The ANN determines whether a human is present in the frame
(step a). Upon detecting a human, the frame is passed through
a filter of the user’s choice, selected via the keyboard (step
b). Otherwise, the process restarts. The outcome of the filter
is then compressed and stored.

Simultaneously, the host desktop computer receives the
packets from DoEth and displays the results as they come. We
envision a few plot types including (1) resource utilization over
time, (2) time to watch-points, and (3) a live roofline model.
Importantly, the interface will display when and which watch-
point is hit, showcasing DoEth’s ability to follow a Control
Flow Graph (CFG).

IV. FUTURE WORK

The paper presents DoEth, our work-in-progress prototype
to provide no-overhead fine-grained tracing information of
software and hardware interactions on commercial off-the-
shelf SoCs to practitioners and system designers. The out-
lined demonstration aims to showcase, through an interactive
scenario, the ability of DoEth to provide live tracking of
workloads progress and their run-time resource utilization.

We foresee many avenues for both technical and functional
improvements. This includes expanding:

• DoEth to include a tiny re-programmable RISC-V core
that will be responsible for programming the SoC’s Core-
Sight and the performance monitoring unit. The objective
is to streamline and simplify utilization by reducing the
end-user’s onboard manipulation.

• The Ethernet support receiving information from the host
computer. This will open the possibilities for the host
computer to directly communicate and instrument DoEth.

• The set of supported packets and integrates custom pack-
ets for information regarding FPGA activity and SoC-
wide information such as the SoC’s temperature [5].

• Support to more platforms with transceiver (e.g., Kria
KR260) and with RJ45 Ethernet (e.g., Kria KV260).

REFERENCES

[1] M. Nicolella, S. Roozkhosh, D. Hoornaert, A. Bastoni, and R. Mancuso,
“Rt-bench: an extensible benchmark framework for the analysis
and management of real-time applications,” in Proceedings of
the 30th International Conference on Real-Time Networks and
Systems, ser. RTNS ’22. New York, NY, USA: Association
for Computing Machinery, 2022, p. 184–195. [Online]. Available:
https://doi.org/10.1145/3534879.3534888

[2] [Online]. Available: https://www.lauterbach.com/products/trace-
extensions/powertrace-system/powertrace-iii

[3] [Online]. Available: https://www.ghs.com/products/probe.html
[4] Advanced Micro Devices Inc. (AMD), “10g/25g high speed ethernet sub-

system product guide (pg210),” https://docs.amd.com/r/en-US/pg210-25g-
ethernet/Introduction?tocId=reO6WKaRxFuxiCk6fDpLBQ, 2025, [Ac-
cessed 08-10-2025].

[5] ——, “Ultrascale architecture system monitor user guide (ug580),”
https://docs.amd.com/v/u/en-US/ug580-ultrascale-sysmon, 2021,
[Accessed 08-10-2025].

6



RTSS@Work: VecSim, a Vehicular Edge
Computing Simulator for Real-Time Applications

Chuanchao Gao, Arvind Easwaran
College of Computing and Data Science

Energy Research Institute @ NTU, Interdisciplinary Graduate Programme
Nanyang Technological University, Singapore
gaoc0008@e.ntu.edu.sg, arvinde@ntu.edu.sg

Abstract—This demo presents VecSim, a Vehicular Edge Com-
puting (VEC) simulator designed to evaluate task offloading
and resource allocation strategies for real-time applications
in VEC. VecSim offers detailed and practical simulation of
vehicle mobility, wireless communication in 5G networks, real-
time service subscription architecture, and dynamic offloading
control, bringing the gap between high-level algorithm design
and practical deployment in VEC environments.

Index Terms—Vehicular Edge Computing, Simulator

I. INTRODUCTION

Vehicular Edge Computing (VEC) has emerged as a promis-
ing paradigm to enhance computational efficiency and service
quality in intelligent transportation systems. By leveraging
advanced wireless technologies such as the ultra-reliable low-
latency communication (URLLC) capabilities of 5G, VEC
enables vehicles to offload computation-intensive and time-
critical tasks (e.g., intelligent traffic management and on-
line navigation) to nearby Roadside Units (RSUs). These
RSUs offer both wireless bandwidth for task offloading and
computational resources for task execution. By processing
tasks on nearby RSUs, VEC reduces reliance on centralized
cloud infrastructure and lowers communication latency be-
tween vehicles and servers, making it well-suited for latency-
sensitive vehicular tasks. However, the limited bandwidth and
computational resources available at RSUs necessitate efficient
strategies for task offloading (determining the RSU for task
service deployment) and resource allocation (optimizing the
allocation of bandwidth and computational resources), while
satisfying the system resource and task deadline constraints.

Given VEC’s potential, there has been growing research
interest in developing effective task offloading and resource
allocation strategies. However, deploying and evaluating these
strategies on real testbeds is often cost-prohibitive and tech-
nically complex, making simulators essential tools for experi-
mental evaluation. Popular edge computing simulators (e.g.,
iFogSim [1] and EdgeCloudSim [2]) lack support for 5G
network simulation, making them unsuitable for modeling
online offloading control in VEC, where real-time wireless
channel quality feedback is essential. Alternatively, network-
focused simulators (e.g., Simu5G [3] and Fogbed [4]) offer
fine-grained network modeling, but lacking necessary control

This work was supported by the MoE Tier-2 grant MOE-T2EP20221-0006
and the MoE Tier-2 grant MOE-T2EP20224-0007.

RSU

Scheduler

Fig. 1. VEC Simulator Environment

logic to support real-time task offloading and joint bandwidth
and computational resources optimization.

To bridge this gap, we develop VecSim1, a novel VEC
simulator that provides a comprehensive framework for real-
time vehicular service subscription and resource scheduling.
By integrating real-world data (e.g., traffic trace, task profil-
ing) and 5G-based V2X network modeling, VecSim enables
users to evaluate their scheduling strategies in a realistic
VEC environment and assess various online offloading control
mechanisms based on real-time channel quality feedback.

II. FEATURES OF VECSIM

A VEC (Fig. 1) comprises vehicles, RSUs, and a central-
ized scheduler. Vehicles communicate with RSUs over 5G
networks, while RSUs are connected via wired Ethernet to
a network switch, which is in turn connected to the scheduler.
Each RSU provides wireless bandwidth for task offloading
and computational resources for hosting vehicular services.
The scheduler continuously monitors system status, including
RSU resource utilization and the wireless channel quality
between vehicles and RSUs, and periodically determines task
offloading and resource allocation for vehicular requests.
Given that many vehicular tasks, such as object detection,
operate periodically to process continuous sensor data streams,
our simulator primarily focuses on periodic vehicular tasks.

When a vehicle intends to subscribe to a vehicular service
(e.g., to reduce the computational load of onboard devices
or improve task performance), it first sends a request to the
scheduler via a nearby RSU. The scheduler periodically in-
vokes the scheduling algorithm to deploy services to vehicular
requests. Once a request is scheduled, a grant is sent to the

1The source code is availavle at https://github.com/gaochuanchao/mecRT.

7



application 

profiling

VecSim scheduler

scheduling resource monitor

connection monitorrequest pool

RSU
server

service 1

service 2

5G 

NIC

vehicle

apps

mobility

5G 

NIC

Simu5G

5G Network

SRS feedback, 

offload control

database

vehicle 

GPS trace

Real-World 

Data

Fig. 2. VEC Simulator Architecture

designated RSU to initiate the vehicular service and enable the
offloading of the corresponding task. Meanwhile, when a task
is allowed to offload, its vehicle periodically transmits Sound-
ing Reference Signals (SRS) to the RSU hosting its requested
service for real-time wireless channel quality estimation. If the
channel quality falls below a threshold, the RSU can instruct
the vehicle to temporarily suspend task offloading, thereby
avoiding potential deadline violations caused by increased
transmission delays under poor channel conditions.

The architecture of VecSim is illustrated in Fig. 2. VecSim
comprises three major modules: vehicle, RSU, and scheduler.
The vehicular module manages vehicular applications, controls
vehicle movement, and contains a 5G Network Interface Card
(NIC) to simulate practical wireless data offloading in 5G
networks. In addition, VecSim enables users to integrate either
synthetic vehicle trajectories (e.g., using SUMO [5]) or real-
world GPS traces to control vehicle movement. The RSU
module comprise a 5G NIC for data offloading control in
5G networks, and a server module for vehicular services
deployment based on the instructions from the scheduler.

The scheduler module buffers service requests from vehi-
cles, monitors bandwidth and computational resource usage
at RSUs, collects wireless channel quality metrics between
vehicles and RSUs, and periodically determines the service
deployment for vehicular requests based on the latest system
status. To enhance the realism of VEC simulation, VecSim
supports the use of profiling data obtained from real-world
application execution. When a new scheduling cycle begins,
the scheduler retrieves system status data from the system
monitor and application profiling data to decide the service
deployment and resource allocation for pending requests in
the current scheduling cycle.

III. DEMONSTRATION DESCRIPTION

In the demo, we construct a vehicular edge computing sim-
ulation environment and demonstrate how to conduct experi-
ments on the simulator with various configurations. The simu-
lation environment utilizes real-world taxi GPS trajectory data
[6] to model vehicle mobility, collected in Shanghai on April 1,
2018, by the Shanghai Qiangsheng Taxi Company. Besides, we
evaluate four image classification applications (ResNet-152,
VGG-16, VGG-19, Inception-v4) and two object detection
applications (SSD-Mobilenet-v2, SSD-Inception-v2), profiling
their execution on an NVIDIA Jetson Nano (representing

onboard devices) and NVIDIA RTX 3090/4090/4500 GPUs
(representing RSU servers). The demonstration includes:

• Customize simulation scenario via configuration files.
• Visualization of vehicle mobility and task offloading.
• Analysis of simulation results.

IV. CONTRIBUTION

To facilitate reproducible and realistic evaluation of ve-
hicular edge computing strategies, we develop VecSim, an
integrated and extensible simulator that models real-time
service subscription and resource scheduling in 5G-enabled
VEC environments. Built upon the Simu5G framework, Vec-
Sim incorporates fine-grained 5G-based V2X communication
modeling with dynamic channel quality estimation, enabling
the study of online offloading control under realistic wireless
conditions. It supports both synthetic and real-world vehicular
mobility traces, task profiling from empirical measurements,
and flexible configuration of vehicular application parameters
such as task period, deadline, and data size. Moreover, VecSim
introduces a modular scheduler design that allows researchers
to implement and evaluate custom algorithms for joint task
offloading and resource allocation with deadline guarantees.
By bridging the gap between network-level simulation and
application-level resource scheduling, VecSim provides a com-
prehensive and high-fidelity experimental platform for study-
ing adaptive and real-time resource management in VEC
systems.

V. CONCLUSION

This demo highlights the capabilities of VecSim in filling
the gap between high-level algorithm design and practical de-
ployment. By supporting customizable scheduling algorithms
and online offloading control mechanisms, VecSim provides a
flexible platform for evaluating task deployment and resource
management strategies in practical VEC systems.

REFERENCES

[1] H. Gupta, A. Vahid Dastjerdi, S. K. Ghosh, and R. Buyya, “ifogsim: A
toolkit for modeling and simulation of resource management techniques in
the internet of things, edge and fog computing environments,” Software:
Practice and Experience, vol. 47, no. 9, pp. 1275–1296, 2017.

[2] C. Sonmez, A. Ozgovde, and C. Ersoy, “Edgecloudsim: An environment
for performance evaluation of edge computing systems,” in 2017 Second
International Conference on Fog and Mobile Edge Computing (FMEC),
2017, pp. 39–44.

[3] G. Nardini, D. Sabella, G. Stea, P. Thakkar, and A. Virdis, “Simu5g–an
omnet++ library for end-to-end performance evaluation of 5g networks,”
IEEE Access, vol. 8, pp. 181 176–181 191, 2020.

[4] A. Coutinho, F. Greve, C. Prazeres, and J. Cardoso, “Fogbed: A rapid-
prototyping emulation environment for fog computing,” in 2018 IEEE
International Conference on Communications (ICC), 2018, pp. 1–7.

[5] P. A. Lopez, M. Behrisch, L. Bieker-Walz, J. Erdmann, Y.-P. Flötteröd,
R. Hilbrich, L. Lücken, J. Rummel, P. Wagner, and E. Wießner,
“Microscopic traffic simulation using sumo,” in The 21st IEEE
International Conference on Intelligent Transportation Systems. IEEE,
2018. [Online]. Available: https://elib.dlr.de/124092/

[6] SODA, “Shanghai qiangsheng taxi gps data trace (2018-04-01),” 2018.
[Online]. Available: https://github.com/hetianzhang/Edge-DataSet?tab=
readme-ov-file\#taxi-trajectory-data

8


